Supplemental Information
Projectile Motion

1. Required Data
 (a) h - height from the floor. $\Delta h = 1$ mm.
 (b) D_{eff} - Effective diameter. Measure using the screw-actuated linear translator (SALT). 1 turn = 1/28 inch.
 (c) Table 1.A to 1.E using Different Heights (FIVE TABLES)

<table>
<thead>
<tr>
<th>Trial</th>
<th>Time t</th>
<th>Distance x</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 trials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δx</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average t</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δt</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 Height From Table y

 (d) Table 2 - Summary of Table 1.A to 1.E

<table>
<thead>
<tr>
<th>Height (y) From Table</th>
<th>Average x</th>
<th>Δx</th>
<th>Average t</th>
<th>Δt</th>
<th>v_x</th>
<th>Δv_x</th>
</tr>
</thead>
</table>

 Five Heights

2. Required Graphs
 (a) (Do at home) Graph 1 - x versus v_x. Draw error bars. Find slope and slope uncertainty (K and ΔK). Compare slope with $\sqrt{2h/g}$. Plot also the theoretical formula on the same graph

 $$x = v_x \sqrt{\frac{2h}{g}}$$

 (b) (Do NOW) Graph 2 - x versus y based on Table 2. Use this graph to predict the distance x from a height y which you have not previously measured. Show the TA that the ball indeed drops within the vicinity of your predicted distance.

3. Error Analysis
 (a) For each Table 1.x,
 $$\Delta x = (x_{\text{max}} - x_{\text{min}})/2$$

 Use similar formula for Δt.
 (b) $\Delta v = (v_{\text{max}} - v_{\text{min}})/2$ where
 $$v_{\text{max}} = \frac{(D + \Delta D)(t - \Delta t)}{t}$$
 $$v_{\text{min}} = \frac{(D - \Delta D)(t + \Delta t)}{t}$$

4. Guide Questions
 (a) Based on the SALT instrument you used to measure the ball’s effective thickness, to what precision can you measure D_{eff}? In other words, what is ΔD_{eff}?
 (b) Derive
 $$x = v_x \sqrt{\frac{2h}{g}}$$

 starting from the equations of motion in the horizontal and vertical directions.
 (c) Do your experimental data points agree with the theoretical line? Discuss.